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Abstract: We model the hospital as seeking to balance the costs to itself in providing care, 

as well as the societal cost of people waiting for care. We use queuing theory to show that 

the optimal capacity and the corresponding optimal occupancy rate are dependent on the 

marginal cost of expanding capacity, the marginal cost of waiting, and the rates of patient 

arrival and discharge. Therefore, a universal occupancy target is unfounded. As well, the 

model shows that increasing capacity to respond to increased patient influxes is inadequate, 

suggesting that the healthcare system must explore alternate responses to burgeoning 

patient populations. 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction  

Occupancy rates in hospitals are a major concern of health policy. There is ample evidence 

that high occupancy rates are intimately associated with poor outcomes such as greater risk 

of premature death and readmission (Chrusch et al., 2009). In a systematic review, Kaier et. 

al. (2012) showed that high bed occupancy rates directly influenced the incidence of 

hospital-acquired infections. Occupancy rates have been a great matter of concern for many 

healthcare systems, especially those with universal healthcare, for example Canada. While 

exact statistics on the occupancy levels are largely unavailable, there are some indications 

as to the extent of the problem. According to an audit by the Ontario Ministry of Health, 

60% of all medicine wards in Ontario’s large community hospitals have occupancy rates 

higher than 85%. Indeed, overcrowding in Ontarian hospitals has somewhat become the 

new “norm”, as figures show multiple hospitals with higher than 100% occupancy (Grant 

2017). The target of 85% is notable, as this is the number that the Ministry looks to in order 

to guide its hospital capacity determinations. The 85% target seems to be a widely accepted 

target, and is referenced widely in various other governmental publications, including those 

by the UK Department of Health (2017). The general justification for this occupancy rate is 

to limit unused resources, while still maintaining some excess capacity to accommodate 

surges of patient influx. As governments continue to set standards for hospital capacity in 

the future, a rigorous determination of the optimal capacity, which is a crucial determinant 

of the occupancy rate, is key.  

 

The question of an optimal capacity for hospitals has a rich literature associated with it. 

Numerous previous papers have used results from queuing theory, the mathematical study 



of wait lines or queues (Gnedenko 1989), in order to calculate the optimal number of beds 

given certain criteria. For example, Jones (2011) looked at the required number of beds for 

various levels of allowable wait times and various allowable probabilities of an incoming 

patient being forced to wait. Similarly, Gorunescu et. al. (2002) used models from queuing 

theory in order to simulate how a hospital would function. However, they used a loss 

model, meaning they assumed that any incoming patient who did not receive immediate 

service would simply give up and go home. However, this model is not fully realistic, as 

surely prior knowledge tells us that patients do indeed wait for service – for beds, for 

procedures, etc. These and other studies show that hospital operations are ripe for analysis 

through the lens of queuing theory.  

 

However, we argue that prior applications of queuing theory to hospital operations have 

been lacking in two major ways. Firstly, there is often no consideration of the cost of 

expansion. Surely, to increase capacity costs resources: not just the money to build the new 

bed, but also staffers and the space it occupies. Papers that determine the optimal number of 

beds based solely on functional or health related outcomes like average wait time implicitly 

assume that coffers are limitless and that we can build however many beds we need in order 

to fulfill such criteria. This is clearly not a realistic assumption, and a consideration of costs 

is necessary to make such models more realistic, seeing as spending on hospital beds 

necessarily elicits a trade-off in spending elsewhere. Secondly, the mathematical treatment 

of such models has been cursory. For example, Kembe et. al. (2012) did incorporate cost 

considerations into their queuing theory results, but only applied the equations to one 

specific hospital. This is really a rather routine numerical application, and unfortunately, 



generalization to various levels of hospital characteristics was lacking. Dynamic shifts in 

variables were not considered, and scenarios like surges of patients and how this would 

consequently affect the functioning of the hospital were not explored. 

 

Our paper is novel because, while previous papers have explored the issue of the optimal 

number of beds from a purely health outcome perspective, we also incorporate the costs of 

expansion into the determination of optimal capacity. We then consider changes in the 

constituent variables of the model and see what the model can tell us about real-life policy 

regarding guidelines for hospital capacity. Lastly, we discuss how governments ought to 

respond going forward to likely future changes in the healthcare system. 

 

2. Methods 

2.1. A sketch of the development of the model 

The model is roughly developed as follows. We assume that hospitals face two costs: the 

cost it incurs from maintaining a certain number of beds, and the cost of patients waiting. 

The hospital wishes to balance these two costs, so as to minimize the total cost. We define a 

total cost function incorporating both of these considerations. Next, we minimize this cost 

function in order to arrive at the optimal capacity. We then extend this optimal capacity 

level to find the corresponding occupancy rate, through another application of queuing 

theory. Lastly, we perform analyses on how various factors and situations affect the optimal 

capacity and hence the occupancy rate. 

 

2.2. The total cost function 



At every level of capacity 𝑐, there is a cost associated with purchasing and maintaining that 

number of beds. We call this the cost of service 𝑆(𝑐), and we assume that it is a linear 

function such that 𝑆(𝑐) = 𝐴𝑐, where 𝐴 is simply the per-bed cost. We would also like to 

quantify the benefit gained by having beds; however, we will do this by instead turning the 

problem on its head and looking at the cost of not having beds. This is similar to an 

approach used previously by Kembe et. al. (2012). We therefore define 𝑊(𝑐), the cost of 

waiting, and define it to be proportional to the number of people waiting. In a way, this cost 

function is a quantification of the adverse health outcomes associated with waiting. We 

therefore say that 𝑊(𝑐) = 𝐵𝐿(𝑐), where 𝐵 is the average cost of waiting, and 𝐿(𝑐) is the 

number of people in the queue, as a function of capacity. We note here that 𝑊′(𝑐) < 0, 

which is intuitive due to the expected decrease in the size of the queue as we increase the 

number of beds. With these two functions, we can construct our total cost function 𝐶(𝑐), 

which is simply the sum of the cost of service and the cost of waiting. 

𝐶(𝑐) = 𝑆(𝑐) +𝑊(𝑐) 

 

2.3. Optimization condition of 𝐶(𝑐) 

Differentiating with respect to the level of capacity, 

𝐶′(𝑐) = 𝑆′(𝑐) +𝑊′(𝑐) 

Hence, for every marginal increase in the number of beds 𝑐 in a hospital, there are two 

factors at play: the increased cost due to adding that bed, and the decreased cost of waiting. 

The first order optimization condition of the function is simply setting 𝐶′(𝑐) = 0, and 



hence we have the important statement that to optimize capacity, we must choose it such 

that 

𝑆′(𝑐) = −𝑊′(𝑐) 

Therefore, the optimal capacity is when the marginal cost of adding that bed is balanced by 

the marginal decreased cost of waiting. As noted above, 𝑊′(𝑐) < 0, while 𝑆′(𝑐) > 0 and is 

constant. We are only interested in the interior solutions to this optimization condition, 

although we note the possible existence of corner solutions as well1.  

 

2.4. Defining the marginal service cost function 𝑆′(𝑐) 

Since 𝑆(𝑐) = 𝐴𝑐, we have that 

𝑆′(𝑐) = 𝐴 

 

2.5. Defining the marginal waiting cost function 𝑊′(𝑐) 

Based on the definition of 𝑊(𝑐), it is first necessary to understand 𝐿(𝑐), the number of 

people in the queue, before we can deduce 𝑊′(𝑐). For this, we turn to queuing theory, a 

field of mathematics which models the formation of queues. Based on certain pieces of 

information about the system – in our case, the hospital ward – we can describe various 

properties of the queue.  

 

 
1 If |𝑆′(𝑐)| > |𝑊′(𝑐)| for all 𝑐, then decreasing 𝑐 will always decrease 𝐶(𝑐), and the cost minimizing capacity 
level is to have no beds. On the other hand, if |𝑊′(𝑐)| > |𝑆′(𝑐)| for all 𝑐, then the optimal capacity is to 
increase the number of beds without bound, or until we reach some stipulated upper bound, as for every 
bed added, the cost of adding the bed is smaller than the cost saved (i.e. benefit) of decreasing waiting and 
related adverse outcomes. 
 



2.6. Using queuing theory to model the hospital 

First, let us examine how the hospital ward operates, in an ideal situation. There are 𝑐 

number of beds to which incoming patients, arriving randomly and independently of each 

other at an average rate per unit time 𝜆, may be allocated. This assumption may not be 

appropriate in some situations, for example an epidemic event, where certainly these 

arrivals are not independent of one another – but, we argue that in regular day-to-day 

functioning, we can assume independent arrivals. Patients spend a certain time occupying 

whatever bed they are in, and then are discharged, such that patients are discharged from 

the hospital at an average rate 𝜇. We will assume that all the beds are identical, so that we 

do not care to which bed a certain patient is allocated. Furthermore, only one queue is 

formed: all the patients are in one line awaiting a bed; there are not individual queues for 

each bed. We will further assume that patients are allocated to a bed in a first come first 

serve basis: no prioritization of patients is performed. Based on these simple assumptions, 

we model both arrivals and discharges as Poisson variables, and define their average or 

expected value as 𝜆 and 𝜇 respectively. Empirical evidence justifies this claim, as analyses 

of hospital data have shown that both arrivals and discharges in various wards are well-

approximated by a Poisson distribution, including obstetrics (Gam et. al., 2013; Gao et. al. 

2017) and emergency (Whitt and Zhang, 2017). 

 

This is important, as this means that the hospital can be appropriately modelled with a type 

of queuing model called an M/M/c queuing model. The M refers to the Poisson nature of 𝜆 

and 𝜇, while the 𝑐 refers to the capacity of the hospital as we have discussed throughout 



this paper. Given the three variables 𝜆, 𝜇, and 𝑐, the M/M/c model provides us with the 

following important results. The average occupancy rate 𝜌 is given as follows (Zukerman, 

2013): 

𝜌 =
𝜆

𝑐𝜇
 

This formula aligns with our intuition that the occupancy rate increases along with the 

arrival rate and falls with increases in capacity or the rate of discharge. The expected 

number of people in the queue 𝐿 is (Zukerman 2013): 

𝐿(𝑐) = 𝑃0 (
𝜌𝑐+1

(𝑐 − 1)! (𝑐 − 𝜌)2
) 

𝑃0 is the probability of having zero patients in the ward, and is given by [13]: 

𝑃0 = [∑
𝜌𝑖

𝑖!

𝑐−1

𝑖=0

+
𝜌𝑐

𝑐! (1 − 𝜌)
]

−1

 

We observe that as 𝜌 = 𝜆
𝑐𝜇⁄ , we can redefine 𝐿(𝑐) as a function of 𝑐 and 𝜆 𝜇⁄ . For ease of 

notation, we declare the variable 𝜀, and define it as: 

𝜀 =
𝜆

𝜇
 

The interpretation of 𝜀 is that it is the ratio of arrival rate to discharge rate, or the inverse 

turnover rate. Hence, we rewrite the queue length function as 𝐿(𝑐, 𝜀). Having rigorously 

treated 𝐿, we return to our discussion of the marginal waiting cost function. 

 

2.7. Returning to the marginal waiting cost 𝑊′(𝑐) 



From our discussion above about 𝐿(𝑐, 𝜀), we see that 𝑊(𝑐) is also dependent on 𝜀, and so 

we write: 

𝑊′(𝑐, 𝜀) = 𝐵𝐿′(𝑐, 𝜀) 

However, fixing a certain value of 𝜀 yields a waiting cost function that is only dependent on 

𝑐. This leads to an important insight: we must fix a certain 𝜀 if we seek to arrive at an 

optimal level of capacity 𝑐∗; or, said in another way, 𝑐∗ is a function of 𝜀. Our use of 𝜀 also 

leads to an intriguing conclusion: the actual values of 𝜆 or 𝜇 do not matter – it is rather their 

ratio that is important. In this way, a high 𝜆 does not necessarily imply a high 𝑐∗, as we 

need to look at it relative to 𝜇.    

 

Unfortunately, the formula for 𝐿 is arduous to look at and so it is not immediately clear how 

𝑊(𝑐) looks. More importantly, it is non-differentiable, as it is defined only for discrete 

inputs, due to the factorial term. Hence, we cannot use standard calculus techniques to 

describe 𝑊(𝑐) and 𝑊′(𝑐). We instead analyse it from a computational point of view. The 

pseudocode is attached in Appendix 1, but we describe our approach here in plain terms. 

We generated a 𝐿(𝑐) curve by holding 𝜀 constant and graphing 𝐿(𝑐) against 𝑐 for a range of 

𝑐 values. Note that 𝑊(𝑐) is simply 𝐿(𝑐) scaled by some factor 𝐵, and so knowing the 

general behaviour of the 𝐿(𝑐) curve also tells us about the 𝑊(𝑐) curve. We also took very 

tiny marginal increases in 𝑐 when generating 𝐿(𝑐), thereby mimicking infinitesimal 

changes of 𝑐, to generate the 𝑊′(𝑐) curve. Through these techniques, we arrived at the 

following graphical depiction of the curves. 

 



Figure 1. Shapes of waiting cost function and marginal waiting cost function 

 

Interestingly, we found that 𝑊(𝑐) is well-approximated by an exponential decay function, 

and so it follows from calculus that 𝑊′(𝑐) should be as well. We observe that increasing 𝜀 

shifts the −𝑊′(𝑐) curve to the right, and, vice versa, a decrease shifts the curve to the left. 

Intuitively, this comes from the fact that as 𝜀 increases (an increase in arrivals or a decrease 

in discharges), we require a greater number of beds to maintain the same queue size. As the 

marginal cost of waiting is proportional to the length of the queue, we require a greater 

number of beds at any given level of marginal cost of waiting.  

 

2.8. Optimizing the number of beds 

We can depict the optimal number of beds as the intersection of the 𝑆′(𝑐) curve and the 

−𝑊′(𝑐) curve. As 𝑆′(𝑐) = 𝐴, it is simply a flat line, and we have already drawn −𝑊′(𝑐) 

above in Figure 1.  



Figure 2. Determining the optimal number of beds 

 

In Figure 2 above, we see that there is a unique optimal capacity, which can be found by 

looking at the intersection of the two curves for a given 𝜀, as for each 𝜀, there is a unique 

−𝑊′(𝑐) curve. Furthermore, we see that increasing 𝜀 increases the optimal capacity. This is 

a rather intuitive result if we recall that 𝜀 = 𝜆
𝜇⁄ . For example, if more patients arrive, so 

that 𝜆 and hence 𝜀 increase, then it is quite sensible that we should need more beds in order 

to mitigate the higher costs of waiting. Similarly, if fewer patients are being discharged, so 

𝜇 decreases and so 𝜀 increases, then it is also similarly intuitive that we would need more 

beds as there are more patients in the system. The model exactly matches our intuition as to 

how these factors would affect the optimal number of beds, which in turn justifies our 

assumptions and modelling thus far. 

 

2.9. Extending the model to occupancy rate 𝜌 



We previously gave a definition of the average occupancy rate as 𝜌 = 𝜆
𝑐𝜇⁄ , which we can 

also write as 𝜌 = 𝜀
𝑐⁄ , since 𝜀 = 𝜆

𝜇⁄ . The relationship between 𝑐 and 𝜌 is injective, so that, 

for a given 𝜀, there exists a unique optimal occupancy rate for a given number of beds. We 

are interested in how changing the properties of the hospital in terms of arrivals and 

discharges affects the occupancy rate. Looking at Figure 2, if we increase 𝜀, it is optimal to 

increase 𝑐. However, as 𝜌 = 𝜀
𝑐⁄ , it is ambiguous, looking from just a graphical point of 

view, as to how a change in 𝜀 affects 𝜌, as this depends on the relative magnitudes of the 

changes in 𝜀 and 𝑐. Again, we are limited in our understanding by the non-differentiability 

of  𝑊(𝑐), and once again turn to computational techniques to better understand how 

occupancy rates are affected. Our full pseudocode is provided in Appendix 1. 

 

We sought to depict this relationship by graphing 𝜌 vs 𝑐. Given that 𝜌 = 𝜀
𝑐⁄ , if we fix 𝜀, 

we get a unique curve showing the occupancy level at each level of capacity. Exactly one 

point on that curve corresponds to the optimal number of beds and the corresponding 

optimal capacity (𝑐∗, 𝜌∗). Essentially what we sought to do was “connect the dots”: draw a 

curve connecting the optimal points for all 𝜀. We allowed 𝜀 to vary over a large range of 

values, stepping by very small increments. We generated a 𝑊′(𝑐) curve for each level of 𝜀, 

using the method described previously. Note that we simply arbitrarily chose 𝐴 = 𝐵 = 1 

initially, as we are interested in the general behaviour, and 𝐴 and 𝐵 are simply scaling 

factors. Indeed, we later found that our practical results are robust to this assumption. We 

then found the intersection with the 𝑆′(𝑐) to arrive at the optimal capacity 𝑐∗, and the 

corresponding occupancy rate 𝜌∗. We then connected all the pairs (𝑐∗, 𝜌∗) generated from 



varying 𝜀, and thus constructed an optimality curve. The visualization of this approach is 

shown in Figure 3. 

Figure 3. Generating the optimality curve by connecting the optimality points of occupancy 

curves for a wide range of 𝜀 

 

Our optimality curve is increasing, concave, and approaches 𝜌 = 1. Its property as 

unambiguously increasing is surprising. We also observe that such an optimality curve is 

not stationary and can change depending on 𝐴 and 𝐵. We note that any point on this 

optimality curve is also a point on the curve of 𝜌 vs 𝑐 for a given level of 𝜀. Therefore, 

given an optimality curve, if we graph 𝜌 vs 𝑐 for a fixed 𝜀, the intersection of the two 

curves yields the optimal capacity and optimal occupancy for that level of 𝜀. This is shown 

below in Figure 4. 

 

Figure 4. The relationship between occupancy rate and level of capacity 



 

3. Results  

We now explore the consequences of Figure 4. First, we look at the case with a constant 𝜀. 

If a hospital is operating at too high of a capacity, beyond its 𝑐∗, then it will experience 

lower occupancy rates. This is not necessarily good, as the hospital is not operating on the 

optimality curve: at this point, the marginal cost of service outweighs the marginal 

decreased cost of waiting. It may optimize itself by decreasing the number of beds, 

although this will mean an increase in occupancy rates. Conversely, if the hospital has too 

few beds, such that it has less than 𝑐∗ beds, then it will experience too-high occupancy 

rates. In this case, the hospital would benefit from increasing its number of beds, as this 

would allow it to cost-minimize and decrease occupancy rates. 

 



Now we consider what would happen if we allow 𝜀 to change. We already know from 

Figure 2 and from our intuition that as 𝜀 increases, 𝑐 should increase to match it. Rather 

surprisingly, according to Figures 3 and 4, it also increases the occupancy rate 𝜌 (and 

likewise, for a decrease in 𝜀, 𝜌 decreases). We can model this by saying we move from a 

value of 𝜀1 to 𝜀2 – that is, the rate of arrivals relative to the rate of discharge increases. In 

response to this increase in incoming patients, the cost-minimizing hospital responds by 

increasing the number of beds from 𝑐1 to 𝑐2, so that it can continue to operate optimally. 

Alas, the occupancy rate also, rather counterintuitively, increases as well. This is depicted 

below. 

 

Figure 5. The hospital’s response to an epsilon shock 

 

The increase in 𝜀 is modelled as the shift from the 𝜌-curve of 𝜀1 to that of 𝜀2. In the short 

run, the hospital is still operating at the same number of beds 𝑐1 and so its occupancy rate 



increases from 𝜌1 to 𝜌2. In the long run, the hospital attempts to move back to the 

optimality curve, and so increases its capacity from 𝑐1 to 𝑐2, and therefore decreases its 

occupancy rate to 𝜌3. With an increase in arrivals relative to discharges, the occupancy rate 

increases, as is intuitive. In response to this the hospital increases its capacity, and though 

this decreases the occupancy rate from that initial shock, it is yet still larger than the 

occupancy rate that was present before the increase in arrivals. As we will further explore 

in the discussion, this suggests that increasing the number of beds to accommodate 

increased patient influx is not necessarily a wholly beneficial policy – though we are still 

cost-minimizing, we yet experience an increased occupancy rate.  

 

4. Discussion 

Numerous insights into hospital capacity and occupancy rates may be gleaned from Figure 

4 and Figure 5. Firstly, a one-size-fits-all conception of occupancy rate is unfounded. As 

we discussed in the introduction, a target of 85% is widely cited in government policy. 

However, what Figure 4 shows is that there is in fact a range of optimal occupancy rates, 

and the optimal one for a specific hospital depends on the hospital’s individual 

characteristics (namely, its 𝜀, and even its 𝐴 and 𝐵). Attempting to push a single occupancy 

target onto every hospital without consideration of the variance of these characteristics is 

not ideal. 

 

The second important result we see from our discussion of changes in 𝜀 is that despite 

increasing the number of beds in the long term to remain on the optimality curve as a 



response to an increase in 𝜀, the occupancy rate yet increases. Despite the hospital’s efforts, 

the percentage of its beds that are occupied increases. This is a result that runs directly 

counter to a prevailing notion of health policy and indeed counter to our instinctual 

understanding. Increased number of patients is often met with a recommendation to 

increase the capacity of the hospital, so as to mitigate the increase in occupied beds. 

However, what this model suggests is that this is a futile effort – the occupancy rate will 

continue to increase. The hospital is essentially fighting a losing battle, since indeed it 

cannot decrease the occupancy rate by responding in this fashion, as shown in Figure 4. 

Simply increasing capacity is an insufficient response if we believe that low occupancy 

rates are desirable. This result is of paramount importance as factors like an aging 

population will contribute to increased patient arrivals in the future (Canadian Medical 

Association 2013). We can conclude, therefore, that while the optimizing hospital does 

indeed mitigate the increase in occupancy resulting from an increase in arrivals, it alas 

cannot completely reverse it, and is doomed to experience, even in the long run after 

adjusting itself towards optimality, a higher occupancy rate than before. 

 

While the model gives us policy criticisms, it also yields useful policy prescriptions. 

Continuing our exploration of the situation discussed above, we must stage another 

response to an increasing 𝜆. A range of policy responses are possible simply by examining 

each of the constituent variables in the model. For example, previously we took 𝜀 to be in 

some way exogenous. However, it is quite possible that the healthcare system may be able 

to affect 𝜀 by modifying 𝜇. As 𝜇 is the rate of discharge, this is in some way related to the 



efficiency of the hospital. Examination of current bureaucratic structures in healthcare, and 

aiming to cut down on these, would increase 𝜇 so as to balance the increase in 𝜆 (indeed, to 

match an increase in 𝜆 with the proportionally same increase in 𝜇 would keep 𝜀 constant). It 

is even arguable that health policy could affect 𝜆: an increased emphasis on preventative 

care could mitigate the number of patients that arrive at the hospital. In the realm of the 

emergency ward, where concerns about high occupancy rates are perhaps most prevalent, 

pushing the notion that only actually emergent cases should present to emergency would be 

a positive step towards limiting overcrowding. 

 

The optimality curve is also not necessarily static. By decreasing 𝐴, the per-bed cost, we 

shift the 𝑆′(𝑐) curve down, and hence the optimality curve would shift to the right to show 

that for a given 𝜀, the optimal capacity is higher and in fact we yield a correspondingly 

lower occupancy rate. Therefore, in the situation depicted in Figure 4, if we responded by 

shifting the optimality curve by the necessary amount, then we could still be cost-

optimizing and maintain, or even decrease, the occupancy rate. Extensive analysis is 

possible on each and every variable used in this model, each of which yield a multitude of 

associated policy measures that we can use to respond to increased number of patients, 

other than merely increasing capacity. 

 

5. Conclusion 

In this paper, we developed a cost-minimizing model that shows how one can determine the 

optimal level of capacity for a hospital. We later extended our analysis into occupancy 



rates, and, through computational techniques, derived surprising relationships between 

occupancy rates and hospital characteristics. Notably, there is no single optimal occupancy 

rate, but rather it is dependent on the hospital. We also showed that merely increasing the 

number of beds to match an increase in patients will not maintain low occupancy rates. 

Despite operating at an optimizing capacity, hospitals will be subject to increases in 

occupancy in the future. If keeping occupancy rates low is desirable, then the healthcare 

system must look to other ways of dealing with burgeoning patient populations. 
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Appendix 

Appendix 1. Pseudocode used to generate curves 

We used R, which implements the M/M/c queuing model in its queuing package. 

Loop ε from 0.1 to 50 stepping by 0.1 

 Loop c from minimum allowable beds2 to 100,000 stepping by 1 

  Calculate L(c) for each c using the queuing package 

  Calculate W(c) by W(c) = B*L(c) 

  Calculate W’(c) by ΔW(c) 

  Store3 (c, W(c)) in a list of ordered pairs 

  Store4 (c, W’(c)) in a list of ordered pairs 

 Fit an exponential approximation5 to the W(c) curve in the form m*exp(nc) 

 Numerically solve6 for -dW = dS = A to get the optimal beds c0 

 Calculate p0 = ε/c0 

 Store (c0, p0) in a list of ordered pairs 

Plot the list of (c0, p0) to generate the optimality curve 

 

 
2 As 𝜌 < 1, 𝜀 𝑐⁄ < 1, so 𝑐 > 𝜀. We hence choose the minimum number of beds as the smallest integer 
greater than 𝜀. 
3 This is the list of points that generate our 𝑊(𝑐) curve 
4 This is the list of points that generate our 𝑊′(𝑐) curve. We drew it to observe its general behaviour. 
5 An exponential approximation was seen to fit the curve well due to analysis of the 1st, 2nd, 3rd, and 4th 
differences 
6 As we wrote 𝑊(𝑐) = 𝑚𝑒𝑛𝑐, then −𝑊′(𝑐) = −𝑛𝑚𝑒𝑛𝑐. Solving for optimal beds, −𝑊′(𝑐) = 𝑆′(𝑐) = 𝐴 =

−𝑛𝑚𝑒𝑛𝑐. And so 𝑐𝑜 =
1

𝑛
ln

−𝐴

𝑚𝑛
 


